

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/22
Paper 2		Octo	ober/November 2012
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	aterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 14 printed pages and 2 blank pages.

1 The diagram shows the structures of five elements, A, B, C, D and E.

For Examiner's Use

(c) Which two of the words or phrases in the list below describe the structure of element B?

covalent	gian	t	ionic	
metallic	simple at	omic	simple molecular	
 	and			. [2]

(d) What do you understand by the term element?

[Total: 10]

For

Examiner's Use

3 2 Ammonia, NH₃, is an alkaline gas. (a) Describe a test for ammonia. test result[2] **(b)** What is the pH of an aqueous solution of ammonia? Put a ring around the correct answer. pH1 pH3 pH5 pH7 pH9 [1] (c) Ammonia reacts with hydrochloric acid. (i) Complete the symbol equation for this reaction. $NH_3 + HCl \rightarrow \dots$ [1] (ii) Hydrochloric acid can be made by dissolving hydrogen chloride, HCl, in water. Draw a diagram to show the arrangement of electrons in hydrogen chloride. Show only the outer electrons.

Show a hydrogen electron as • Show a chlorine electron as x

[2]

(d) Aqueous ammonia reacts with sulfuric acid to form a solution of ammonium sulfate.

For Examiner's Use

2NH _a (ag)	+	H ₂ SO ₂ (ag	\rightarrow	$(NH_4)_2SO_4$	(ag)
LI 11 13 (UY)		1 12004 (uq	, ,	(14114)2004	(44)

(i)	Ammonium sulfate is a colourless salt. Describe how you could use a titration method to make a colourless solution of ammonium sulfate.
	[4]
(ii)	How can crystals of ammonium sulfate be obtained from a solution of ammonium sulfate?
	[1]
	[Total: 11]

state at room

temperature

melting point

/°C

-220

3 The table below shows the properties of some halogens.

colour

yellow

halogen

fluorine

For Examiner's Use

		chlorine	light green	gas			
		bromine	brownish-red	liquid	-7		
		iodine	grey-black	solid	+114		
(a)	(i) WI	nat is the tre	nd in the colour	of the halogens dov	vn the Group?		
						[1]	
((ii) Pr	edict the sta	te of fluorine at r	oom temperature.			
						[1]	
(i	i ii) Pr	edict the me	Iting point of chl	orine.			
						[1]	
	The reactivity of three different halogens was compared by reacting them with solutions of sodium halides. The results are shown in the table below.						
	reaction mixture observations						
	asta	tine + sodiur	m iodide colo	our of reaction mixtu	re remains uncha	anged	
	bron	nine + sodiu	m iodide	mixture turns	dark brown		
	chlori	ne + sodium	bromide	mixture turns	brownish-red		
		e the results lorine and io		suggest the order of	of reactivity of as	tatine, bromine,	
mo	st reac	tive ——			→ leas	t reactive	
(. ,	edict whethe		eact with sodium chl	oride solution.	[2]	
		piani your ai	10 110 11				
	[1]						

 $\begin{tabular}{ll} \textbf{(c)} & Chlorine reacts with excess cold dilute sodium hydroxide. The products of the reaction are sodium chloride, sodium chlorate(I) and water. \\ \end{tabular}$

For Examiner's Use

The formula of sodium chlorate(I) is NaClO.

Complete the equation for this reaction.

$$Cl_2$$
 +NaOH \rightarrow NaC l + NaC l O + [2]

- (d) (i) Explain why chlorine is used in water purification.

 [1]
 - (ii) Impure water contains particles of minerals and remains of dead plants and animals. One stage in water purification is the removal of these particles by filtration. The diagram below shows a water filter.

Explain how this water filter works.	
	[2]

[Total: 11]

The process of distillation is used in an oil refinery to separate petroleum into different fractions.

For Examiner's Use

(a)	what do you understand by the term <i>petroleum traction?</i>

(b) Some petroleum fractions are more useful than others. There is a greater demand for

The diagram shows the demand from customers and the ability of an oil refinery to supply these fractions by fractional distillation alone.

(i) State the name of two fractions for which demand is greater than suppl

[2]	
121	~1
	 <i>2</i> 1

(ii) State one use for each of the following fractions.

these fractions.

refinery gas .	 	

(c) More gasoline can be made by cracking long-chain hydrocarbons.

State the conditions needed for cracking.

For Examiner's Use

		8	
decane, C ₁₂ H ₂₆ , can b	e cracked to	form smaller hyd	drocarbons.
What do you unders	stand by the	term <i>hydrocarbol</i>	1?
			[1]
Complete the equat	ion for the cr	acking of dodeca	ine.
	$C_{12}H_{26} \rightarrow 0$	C.H +	
	- 1226	8. 18	[1]
ene, C ₂ H ₄ , can be for	med by crac	king.	
Draw the full structu	re of ethene	showing all atom	ns and bonds.
			[4]
			[1]
* '			om the list below.
addition	atoms	condensation	dimers
monome	rs poly	mers sub	traction
The small ethene r	nolecules wi	hich ioin togethe	r to form poly(othono) are called
TITO CITICAL CUITOTIC I		mon join togotino	i to form pory(etherie) are called
			the ethene molecules together is
ethene	The p	process of joining	
ethene	The p	process of joining	the ethene molecules together is
ethenean example of an	The p	process of joining	the ethene molecules together is e long-chain molecules which are
ethenean example of an	The p	process of joining	the ethene molecules together is e long-chain molecules which are [3]
ethenean example of an	The p	process of joining	the ethene molecules together is e long-chain molecules which are [3]
ethenean example of an	The p	process of joining	the ethene molecules together is e long-chain molecules which are [3]
	What do you unders Complete the equat ene, C ₂ H ₄ , can be for Draw the full structu Poly(ethene) can be Complete the follow addition monomer	What do you understand by the \cdots	

5	Alur	minium is in Group III of the Periodic Table. Iron is a transition element.
	(a)	Both aluminium and iron have high melting points and boiling points. State two differences in the physical properties of aluminium and iron.
		[2]
	(b)	State one use of aluminium.
		[1]
	(c)	Sodium hydroxide is used to test for aluminium ions. Describe what happens when you add a solution of sodium hydroxide to a solution of aluminium ions until the sodium hydroxide is in excess.
		[3]
		[Total: 6]

For Examiner's Use 6 The diagram below shows a kiln used for manufacturing lime.

For Examiner's Use

The reaction taking place in the kiln is

calcium carbonate \rightarrow calcium oxide + carbon dioxide (lime)

		air	dioxide	harmless	hydrogenated	
	(ii)	Complete these sen	tences using wo	ords from the lis	t below.	
						[2]
(b)	(i)	Coke is mainly carbon Combustion of coke Write a symbol equal	provides the he		on in the lime kiln. on of carbon in oxygen.	
						[1]
	(ii)	Explain why, at the	end of the reaction	on, there is only	lime left in the lime kiln.	
						[1]
(a)	(i)	State the name of a	rock which is la	rgely calcium ca	arbonate.	

poisonous

When carbon burns in a supply of, carbon is formed. This is a colourless gas which has no smell and is

water

[4]

© UCLES 2012 0620/22/O/N/12

monoxide

limited

......

(c) Calcium carbonate reacts with hydrochloric acid to form carbon dioxide. Complete the word equation for this reaction.

For Examiner's Use

calcium carbonate	+	hydrochloric acid	\rightarrow	 +	 +	carbon dioxide	
							[2]

(d) The speed of reaction of calcium carbonate with hydrochloric acid can be found using the apparatus shown below.

(i) Suggest how this apparatus can be used to find the speed of this reaction.

	101
,,,,	[2]
(ii)	State how the speed of this reaction changes when
	the concentration of acid is increased,
	larger pieces of calcium carbonate are used,
	the temperature is increased

[Total: 15]

7 The structures of iodine and potassium iodide are shown below.

iodine

potassium iodide

(a) lodine is a solid at room temperature. Its melting point is +114 °C.

	(i)	Describe what happens to the arrangement and movement of iodine molecu when iodine is gradually heated from 20 °C to 120 °C.	les
			[4]
	(ii)	Calculate the relative molecular mass of iodine.	
			[1]
(b)	(i)	What type of bonding is present in potassium iodide?	
			[1]
	(ii)	Write the simplest formula for potassium iodide.	
			[1]

(c) Complete the table below to show the solubility in water and electrical conductivity of solid iodine and solid potassium iodide.

For Examiner's Use

substance	solubility in water	electrical conductivity of solid
iodine		
potassium iodide		

[4]

(d)	Predict the predic	product	formed	at	each	electrode	when	molten	potassium	iodide	İS
	at the positive	e electro	de								
	at the negativ	e electro	ode								[2]

[Total: 13]

BLANK PAGE

BLANK PAGE

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

The Periodic Table of the Elements **DATA SHEET**

	0	4 He Helium	20 Neon 10 Afr	18	8 7	Krypton 36	131 Xenon	54	Radon 86		175 Lu Lutetium 71	-	Lr Lawrendum 103
			19 Fluorine 9 35.5 C.1	17	® ऴ	0	127 	53 53	At Astatine 85		173 Yb Ytterbium 70	4	Nobelium 102
	I>		16 O Oxygen 8 32 Oxygen Suffur	16	Se 3	Selenium 34	128 Te	52	Po Polonium 84		169 Tm Thulium 69		Mendelevium 101
	>		Nitrogen 7 31 97 Phosphorus	15	75 As	Arsenic 33	122 Sb	51	209 Bi Bismuth 83		167 Er Erbium 68	Ĺ	Fm Fermium 100
	2		Carbon 6 Carbon 8 Silicon Silicon	14	₂ کو	Ε	Sn =		207 Pb Lead 82		165 Ho Holmium 67		ES Einsteinium 99
	=		B Boron 5 A1 Aluminium	13	ନ୍ଦ ଓ	Gallium 31	115 n	49	204 T 1 Thallium 81		162 Dy Dysprosium 66	č	Californium 98
					65 Zn	Zinc 30	112 Cadmium	48	201 Hg Mercury 80		159 Tb Terbium 65	ā	BK Berkelium 97
					² Ω	Copper 29	Ag Silver	47	197 Au Gold		157 Gd Gadolinium 64	ć	Curium 96
Group					69 Z	Nickel 28	106 Pd	46	195 Pt Platinum 78		152 Eu Europium 63		Am Americium 95
Gr					ී රි	Cobalt 27	103 Rhodium	45	192 F Indium		150 Sm Samarium 62	ć	Plutonium 94
		T Hydrogen			₂₈	Iron 26	101 Ru Ruthenium	44	190 Os Osmium 76		Pm Promethium 61	1	Neptunium 93
					SS Mn	Manganese 25	Tc Technetium	43	186 Re Rhenium 75		Neodymium 60		Uranium 92
					²⁵	Chromium 24	96 Mo lybdenum	42	184 W Tungsten 74		141 Pr Praseodymium 59	ć	Fa Protactinium 91
					5 >	Vanadium 23	93 Nidejim	41	181 Ta Tantalum		140 Ce Cerium 58	232	Thorium 90
					84 1	Titanium 22	91 Zr	40	178 Hf Hafnium 72			nic mass	bol nic) number
					Sc Sc	Scandium 21	88 >	39	139 La Lanthanum 57 *	227 Actinium temperature tempe	l series eries	a = relative atomic mass	X = atomic symbolb = proton (atomic) number
	=		Beryllium 4 24 Mg Magnesium	12	o G	Calcium 20	Sirontium	38	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series		ق × ×
	_		Lithium 3 23 23 Sodium	7	® ⊻	Potassium	Rubidium	37	133 Caesium 55	Fr Francium 87	*58-71 L; 190-103 <i>i</i>	;	ه ک

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the

publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.